We have,
(sinθ+cosθ)(tanθ+cotθ)=cscθ+cotθ
⇒(sinθ+cosθ)(sinθcosθ+cosθsinθ)=cscθ+cotθ
⇒(sinθ+cosθ)(sin2θ+cos2θsinθcosθ)=cscθ+cotθ
⇒(sinθ+cosθ)(1sinθcosθ)=cscθ+cotθ
⇒sinθ+cosθsinθcosθ=cscθ+cotθ
⇒sinθsinθcosθ+cosθsinθcosθ=cscθ+cotθ
⇒secθ+cscθ=cscθ+cotθ
⇒secθ=cotθ
⇒1cosθ=cosθsinθ
⇒cos2θ=sinθ
⇒1−sin2θ=sin2θ
⇒1=2sin2θ
⇒12=sin2θ
⇒sin2θ=12
⇒sin2θ=(1√2)2
On comparing both side and we get,
sin2θ=sin2π4
θ=π4(Principalvalue)
Hence, this is the answer.