wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
(sinθ+cosθ)(tanθ+cotθ)=cscθ+cotθ

Open in App
Solution

We have,

(sinθ+cosθ)(tanθ+cotθ)=cscθ+cotθ

(sinθ+cosθ)(sinθcosθ+cosθsinθ)=cscθ+cotθ

(sinθ+cosθ)(sin2θ+cos2θsinθcosθ)=cscθ+cotθ

(sinθ+cosθ)(1sinθcosθ)=cscθ+cotθ

sinθ+cosθsinθcosθ=cscθ+cotθ

sinθsinθcosθ+cosθsinθcosθ=cscθ+cotθ

secθ+cscθ=cscθ+cotθ

secθ=cotθ

1cosθ=cosθsinθ

cos2θ=sinθ

1sin2θ=sin2θ

1=2sin2θ

12=sin2θ

sin2θ=12

sin2θ=(12)2


On comparing both side and we get,

sin2θ=sin2π4

θ=π4(Principalvalue)


Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon