Solution:-
sinx+√3cosx=√2
√3cosx=√2−sinx
Squaring both sides, we have
(√3cosx)2=(√2−sinx)2
3cos2x=2+sin2x−2√2sinx
⇒3(1−sin2x)=2+sin2x−2√2sinx(∵sin2x+cos2x=1)
3−3sin2x=2+sin2x−2√2sinx
⇒4sin2x−2√2sinx−1=0
The above equation is in the quadratic form, i.e. ax2+bx+c.
Now, by using quadratic formula, i.e., x=−b±√b2−4ac2a, we have
sinx=−(−2√2)±√(−2√2)2−(4×4×(−1))2×4
⇒sinx=2√2±√8+168
⇒sinx=√2±√64
∴x=sin−1(√2+√64)+2nπ Or x=sin−1(√2−√64)+2nπ For all n∈integer