wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve sinx+3cosx=2

Open in App
Solution

Solution:-
sinx+3cosx=2
3cosx=2sinx
Squaring both sides, we have
(3cosx)2=(2sinx)2
3cos2x=2+sin2x22sinx
3(1sin2x)=2+sin2x22sinx(sin2x+cos2x=1)
33sin2x=2+sin2x22sinx
4sin2x22sinx1=0
The above equation is in the quadratic form, i.e. ax2+bx+c.
Now, by using quadratic formula, i.e., x=b±b24ac2a, we have
sinx=(22)±(22)2(4×4×(1))2×4
sinx=22±8+168
sinx=2±64
x=sin1(2+64)+2nπ Or x=sin1(264)+2nπ For all ninteger

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon