wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : sin2x(dydxtanx)y=0

Open in App
Solution

sin2x(dydxtanx)y=0dydxysin2x=tanx(1)
comparing equation1 withdydx+py=q, we get
p=1sin2xandq=tanx
Now,I.F=epdx=e1sin2xdx=e12tanxdx=edt2t=e12logt=e(logt)12=1tI.F=1tanxNow,y.1tanx=1tanx.tanxdxytanx=x+Cycotx=x+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon