Step 1: Simplification
Given sin2x−sin4x+sin6x=0
⇒(sin2x+sin6x)−sin4x=0
⇒2sin6x+2x2cos6x−2x2−sin4x=0
⇒2sin8x2cos4x2−sin4x=0
⇒2sin4xcos2x−sin4x=0
⇒sin4x(2cos2x−1)=0
⇒sin4x=0,2cos2x=1
We need to find general solution for both separately.
Step 2: General solution of sin4x=0
General solution is 4x=nπ⇒x=nπ4 where n∈z
Step 3: General solution of cos2x=12
⇒cos2x=cos(π3)
∴2x=2nπ±π3⇒x=nπ±π6 where n∈z