wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
1+x2+y2+x2y2+xydydx=0

Open in App
Solution

1+x2+y2+x2y2+xydydx=0
(1+x2)+y2(1+x2)+xydydx=0
(1+x2)(1+y2)+xydydx=0
1+x2xdx+ydy1+y2=0
1+x2x1+x2dx+ydy1+y2=0
Let I=dxx1+x2+xdx1+x2+ydy1+y2=0
I=I1+I2+I3
Consider I1=dxx1+x2
Let x=tanθdx=sec2θdθ
I1=tanθsec2θdθtanθ1+tan2θ
=secθtanθdθ
=1cosθsinθcosθdθ
=cscθdθ
=ln(cscθ+cotθ)+c1
I1=ln(cscθ+cotθ)+c1

Consider I2=xdx1+x2
Let t=1+x2dt=2xdx
xdx1+x2
=122xdx1+x2
=dtt
=t12+112+1+c2
=2t+c2
=21+x2+c2 where t=1+x2

Consider I3=ydy1+y2
Let t=1+y2dt=2ydy
ydy1+y2
=122ydy1+y2
=dtt
=t12+112+1+c3
=2t+c3
=21+y2+c3 where t=1+y2

I=I1+I2+I3
I=ln(cscθ+cotθ)+c1+21+x2+c2+21+y2+c3
=ln(cscθ+cotθ)+21+x2+21+y2+c where c=c1+c2+c3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon