Solve
√2x2+x+√2=0
Here √2x2+x+√2=0
Comparing the given quadratic equation with
ax2+bx+c=0 we have
a=√2, b=1 and c=√2
∴x=−1±√(12−4×√2×√22×√2
=−1±√−72√2=−1±√7i2√2
Thus x=−1+√7i2√2 and x=−1−√7i2√2