The correct options are
C θ=2nπ+5π12 where
nϵZ D θ=2nπ−π12, where
nϵZWe have
√3cosθ+sinθ=√2 (i)
This is of the form acosθ+bsinθ=c, where a=√3, b=1, c=√2
Let √3=rcosα and 1=rsinα. Then
r=√a2+b2=√(√3)2+12=2
and tanα=1√3 or α=π6
Substituting
√3=rcosα and 1=rsinα in Eq. (i), it
reduces to rcosαcosθ+rsinθ=√2. Thus,
rcos(θ−α)=√2
2cos(θ−π6)=√2
cos(θ−π6)=1√2=cosπ4
⇒ θ−π6=2nπ±π4, nϵZ
θ=2nπ±π4+π6, nϵZ
=2nπ+π4+π6 or
θ=2nπ−π4+π6
=2nπ+5π12 or θ=2nπ−π12, where nϵZ