Solve √3 cos x+sin x=√2.
We have, √3 cos x+sin x=√2
⇒ √32 cos x+12 sin x=√22 [dividing both sides by 2]
⇒ cos π6 cos x+sin π6 sin x=1√2
⇒ cos(x−π6)=1√2 [∵ cos(A−B)=cos Acos B+sin Asin B]
⇒ cos(x−π6)=cosπ4
⇒ x−π6=2nπ ±π4 ⇒ x=2nπ ±π4+π6
⇒ x=2nπ+π4+π6 or x=2nπ−π4+π6
⇒ x=2nπ+5π12 or x=2nπ−π12
Hence, x=2nπ+5π12,x=2nπ−π12 where n∈Z