Solve
√3x2−√2x+3√3=0
Here √3x2−√2x+3√3=0
Comparing the given quadratic equation with
ax2+bx+c=0 we have
a=√3,b=−√2 and c=3√3
D=b2−4ac=−34<0
Hence, the roots will be imaginary.
∴ x=−√2±√(−√2)2−4×√3×3√32×√3
=√2±√2−362√3
=√2±√−342√3
=√2±√34i2√3
Thus x=√2+√34 i2√3 and x=√2−√34 i2√3