√32(x−1)+√2x2−7x−4=√32(x−1)+√2x2−8x+x−4=√32(x−1)+√2x(x−4)+1(x−4)=√3x−32+√(2x+1)(x−4)=√2x+x−4+12+2×12√(2x+1)(x−4)=
⎷(2x+1)+(x−4)2+2×√(2x+1)√2×√(x−4)√2=
⎷(2x+1)2+(x−4)2+2×√(2x+1)√2×√(x−4)√2=
⎷(√(2x+1)√2)2+(√(x−4)√2)2+2×√(2x+1)√2×√(x−4)√2=
⎷(√(2x+1)√2+√(x−4)√2)2=√(2x+1)√2+√(x−4)√2=√(2x+1)+√(x−4)√2.