wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve system of linear equations, using matrix method.
2x+3y+3z=5
x2y+z=4
3xy2z=3


Open in App
Solution

Simplification of given data
Given: The system of equations is

2x+3y+3z=5
x2y+z=4
3xy2z=3
Writing above equation as AX=B

233121312xyz=543

Hence, A=233121312,X=xyz & B=543

Calculate A1
Calculating |A|

|A|=∣ ∣233121312∣ ∣

=2211231132+31231

=2(4+1)3(23)+3(1+6)
=2(5)3(5)+3(5)
=10+15+15=40

Since |A|0

The system of equations is consistent & has a unique solution.

A=233121312

Calculate adj (A)

M11=[2112]=4+1=5

M12=[1132]=23=5

M13=[1231]=1+6=5

M21=[3312]=6+3=3

M22=[2332]=49=13

M23=[2331]=29=11

M31=[3321]=3+6=9

M32=[2311]=23=1

M33=[2312]=43=7

Thus,
adj (A)=A11A12A13A21A22A23A31A32A33

=A11A21A31A12A22A32A13A23A33

=M11M21M31M12M22M32M13M23M33=53951315117

adj A=53951315117
Now,
A1=1|A|adj A

=14053951315117

Solve for the values of X,Y & Z
AX=B
X=A1B

xyz=14053951315117543

xyz=1405(5)+3(4)+9(3)5(5)+(13)(4)+1(3)5(5)+11(4)+(7)(3)

xyz=1402512+2725+52+3254421

xyz=140408040

xyz=121

​​​​​​​x=1 & y=2 & z=1


flag
Suggest Corrections
thumbs-up
26
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon