Solve system of linear equations, using matrix method.
2x−y=−2
3x+4y=3
Simplification of given data
Given: The system of equations is
2x−y=−2
3x+4y=3
Write above equation as AX=B
[2−134][xy]=[−23]
Hence, A=[2−134],X=[xy] and B=[−23]
A=[2−134]=2(4)−(−1)(3)=8+3=11
∴|A|≠0
Thus, system of equations is consistent and has a unique solution
Calculate A−1
A=[2−134]
adj A=[41−32]
Now,
A−1=1|A|adj A
A−1=111[41−32]
Solve for the values of x,y and z
AX=B
X=A−1B
[xy]=111[41−32][−23]
[xy]=111[4(−2)+1(3)−3(−2)+2(3)]
[xy]=111[−8+36+6]
[xy]=111[−512]
[xy]=⎡⎢
⎢⎣−5111211⎤⎥
⎥⎦
∴x=−511 and y=1211