wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve system of linear equations, using matrix method.
2x+y+z=1
x2yz=32
3y5z=9


Open in App
Solution

Simplification of given data
Given: The system of equations is
2x+y+z=1
x2yz=32
3y5z=9
Writing above equation as AX=B
211121035xyz=⎢ ⎢ ⎢1329⎥ ⎥ ⎥
Hence, A=211121035,X=xyz and B=⎢ ⎢ ⎢1329⎥ ⎥ ⎥
Calculate A1
Calculating |A|
|A|=∣ ∣211121035∣ ∣
=2213511105+11203
=2(10+3)1(50)+1(30)
=26+5+3=34
Thus |A|0
The system of equations is consistent and has a unique solution.
A=211121035
Calculate adj A
M11=[2135]=10+3=13
M12=[1105]=5+0=5
M13=[1203]=3+0=3
M21=[1135]=53=8
M22=[2105]=100=10
M23=[2103]=60=6
M31=[1121]=1+2=1
M32=[2111]=21=3
M33=[2112]=41=5
Thus,
adj (A)=A11A12A13A21A22A23A31A32A33T
=M11M21M31M12M22M32M13M23M33=13815103365
A1=1|A|adj A
=13413815103365
Solve for the values of x,y and z
AX=BX=A1B
xyz=13413815103365⎢ ⎢ ⎢1329⎥ ⎥ ⎥
xyz=134⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢13(1)+8(32)+1(9)5(1)+(10)(32)+3(9)3(1)+(6)(32)+(5)(9)⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
xyz=13413+12+9515+273945
xyz=134341751xyz=⎢ ⎢ ⎢ ⎢ ⎢11232⎥ ⎥ ⎥ ⎥ ⎥
x=1,y=12 and z=32


flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon