Solve system of linear equations, using matrix method.
4x−3y=3
3x−5y=7
Simplification of given data
Given: The system of equations is
4x−3y=3
3x−5y=7
Writing equation as AX=B
[4−33−5][xy]=[37]
Hence A=[4−33−5],X=[xy] and B=[37]
Calculating |A|
|A|=∣∣∣4−33−5∣∣∣=4(−5)−3(−3)
=−20+9=−11
Since |A|≠0
∴ System of equations is consistent & has a unique solution .
Calculate A−1
A=[4−33−5]
adj A=[−53−34]
Now,
A−1=1|A|adj A
A−1=1−11[−53−34]
=111[5−33−4]
Solve for the values of x,y
AX=B
X=A−1B
⇒[xy]=111[5−33−4][37]
⇒[xy]=111[5(3)+(−3)73(3)+(−4)7]
⇒[xy]=111[15−219−28]
⇒[xy]=⎡⎢
⎢
⎢⎣(−6)11−1911⎤⎥
⎥
⎥⎦
∴x=−611 and y=−1911