Solve system of linear equations, using matrix method.
x−y+2z=7
3x+4y−5z=−5
2x−y+3z=12
Simplification of given data
Given: The system of equations is
x−y+2z=7
3x+4y−5z=−5
2x−y+3z=12
Writing above equation as AX=B
⎡⎢⎣1−1234−52−13⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣7−512⎤⎥⎦
Hence, A=⎡⎢⎣1−1234−52−13⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ & B=⎡⎢⎣7−512⎤⎥⎦
Calculate A−1
Calculating |A|
|A|=∣∣
∣∣1−1234−52−13∣∣
∣∣
=1∣∣∣4−5−13∣∣∣−(−1)∣∣∣3−523∣∣∣+2∣∣∣342−1∣∣∣
=1(12−5)+1(9+10)+2(−3−8)
=1(7)+1(19)+2(−11)
=7+19−22=4
Since |A|≠0
∴ The system of equations is consistent & has a unique solution.
A=⎡⎢⎣1−1234−52−13⎤⎥⎦
Calculate adj (A)
M11=[4−5−13]=12−5=7
M12=[3−523]=9+10=19
M13=[342−1]=−3−8=−11
M21=[−12−13]=−3+2=−1
M22=[1223]=3−4=−1
M23=[1−12−1]=−1+2=1
M31=[−124−5]=5−8=−3
M32=[123−5]=−5−6=−11
M33=[1−134]=4+3=7
Thus,
adj (A)=⎡⎢⎣A11A12A13A21A22A23A31A32A33⎤⎥⎦′
=⎡⎢⎣A11A21A31A12A22A32A13A23A33⎤⎥⎦′
=⎡⎢⎣M11−M21M31−M12M22−M32M13−M23M33⎤⎥⎦=⎡⎢⎣71−3−19−111−11−17⎤⎥⎦
Now,
A−1=1|A|adj A
adj A=⎡⎢⎣71−3−19−111−11−17⎤⎥⎦
Solve for the values of X,Y & Z
AX=B
⇒X=A−1B
⇒⎡⎢⎣xyz⎤⎥⎦=14⎡⎢⎣71−3−19−111−11−17⎤⎥⎦⎡⎢⎣7−512⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=14⎡⎢⎣49−5−36−133+5+132−77+51+84⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=14⎡⎢⎣8412⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣213⎤⎥⎦
∴x=2 & y=1 & z=3