tan(cos−11x)=sin(cot−11x)
We know that,cos−1x=tan−1(√1−x2x) and tan−1x=sin−1(x√1+x2)
Now,
tan(cos−11x)=sin(tan−1x)
⇒tantan−1⎛⎜ ⎜ ⎜ ⎜⎝√1−1x21x⎞⎟ ⎟ ⎟ ⎟⎠=sinsin−1(x√1+x2)
⇒√x2−11=x√x2+1
⇒√x2−12.√x2+12=x
⇒√x4−14=x
Squaring both side and we get
⇒x4−1=x2
⇒x4−1−x2=0
⇒x4−x2−1=0
Let x2=y
⇒y2−y−1=0
Comparing that, ay2+by+c=0
a=1,b=−1,c=−1
Using quadratic equation formula, and we get
y=−b±√b2−4ac2a
y=−(−1)±√(−1)2−4×1×(−1)2×1
y=1±√52
And
y=x2=1±√52
x=√1±√52
Hence, this is the answer.