Consider the given equation.
tanθ+3cotθ=5secθ
sinθcosθ+3cosθsinθ=5cosθ
sin2θ+3cos2θsinθcosθ=5cosθ
sin2θ+cos2θ+2cos2θsinθ=5
1+2cos2θ=5sinθ
1+2(1−sin2θ)=5sinθ
1+2−2sin2θ=5sinθ
2sin2θ+5sinθ−3=0
2sin2θ+6sinθ−sinθ−3=0
2sinθ(sinθ+3)−1(sinθ+3)=0
We cannot consider sinθ+3=0.
Therefore,
2sinθ−1=0
sinθ=12
sinθ=sinπ6
θ=nπ+(−1)nπ6,n∈I
Hence, this is the answer.