wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
tanθ=sinαcosαsinα+cosα

Open in App
Solution

tanθ=sinαcosαsinα+cosα
=sinαsin(π2α)sinα+sin(π2α) since sin(π2α)=cosα
Using transformation angle formula sinCsinD=2cos(C+D2)sin(CD2) and sinC+sinD=2sin(C+D2)cos(CD2)
=2cos⎜ ⎜α+π2α2⎟ ⎟sin⎜ ⎜απ2+α2⎟ ⎟2sin⎜ ⎜α+π2α2⎟ ⎟cos⎜ ⎜απ2+α2⎟ ⎟
=cosπ4sin(απ4)sinπ4cos(απ4)
We know that sinπ4=12 and cosπ4=12
=sin(απ4)cos(απ4)



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon