wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve tan x+tan 2x+tan 3x=tan x tan 2x tan 3x.

OR

prove that cotπ24=2+3+4+6.

Open in App
Solution

We have tan x+tan 2x+tan 3x=tan x tan 2x tan 3x.

tan x+tan 2x=tan 3x+tan x tan 2x tan3x.

tan x+tan 2x=tan 3x(1tan x tan 2x)

tan x+tan 2x1tan x tan 2x=tan 3x

tan(x+2x)=tan 3x

tan 3x=tan 3x

2tan 3x=0

tan 3x=0

3x=nπ,Z

x=nπ3,Z

Or

we have, LHS=cot(π24)

=cos(π24)sin(π24)=2 cos(π24)cos(π24)2 sin(π24)cos(π24)

=2cos2(π24)2sin(π24)cos(π24)

=1+cos(π12)sinπ12[1+cos θ=2 cos2θ2]

=1+cos(π4π6)sin(π4π6)

=1+cosπ4cosπ6+sinπ4sinπ6sinπ4cosπ6cosπ4sincosπ6

[cos(AB)=cos A cos B+sin A sin B and sin(AB)=sin A cos Bcos A sin B]

=1+12×32+12×1212×3212×12

=22+3+131

=(22+3+1)×(3+1)(31)×(3+1)

=26+22+3+3+3+131

=26+2 2+23+42 [4=2]

=6+2+3+2

=2+3+4+6=RHS


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon