Solve tan x+tan 2x+tan 3x=tan x tan 2x tan 3x.
OR
prove that cotπ24=√2+√3+√4+√6.
We have tan x+tan 2x+tan 3x=tan x tan 2x tan 3x.
⇒tan x+tan 2x=−tan 3x+tan x tan 2x tan3x.
⇒tan x+tan 2x=−tan 3x(1−tan x tan 2x)
⇒tan x+tan 2x1−tan x tan 2x=−tan 3x
⇒tan(x+2x)=−tan 3x
⇒tan 3x=−tan 3x
⇒2tan 3x=0
⇒tan 3x=0
⇒3x=nπ,∩∈Z
∴x=nπ3,∩∈Z
Or
we have, LHS=cot(π24)
=cos(π24)sin(π24)=2 cos(π24)cos(π24)2 sin(π24)cos(π24)
=2cos2(π24)2sin(π24)cos(π24)
=1+cos(π12)sinπ12[∵1+cos θ=2 cos2θ2]
=1+cos(π4−π6)sin(π4−π6)
=1+cosπ4cosπ6+sinπ4sinπ6sinπ4cosπ6−cosπ4sincosπ6
[∵cos(A−B)=cos A cos B+sin A sin B and sin(A−B)=sin A cos B−cos A sin B]
=1+1√2×√32+1√2×121√2×√32−1√2×12
=2√2+√3+1√3−1
=(2√2+√3+1)×(√3+1)(√3−1)×(√3+1)
=2√6+2√2+3+√3+√3+13−1
=2√6+2 √2+2√3+42 [∵√4=2]
=√6+√2+√3+2
=√2+√3+√4+√6=RHS