The solution of the D.E. is given by y=yc+yp where yc is the solution to y002y0+y=0 and yp is a particular solution. We have r22r+1=(r1)2=0 or r=1. Thus, yc=c1ex+c2xex.
yp is given byyp=exu1+xexu2 where
exu01+xexu02=0
exu01+(x+1)exu02=2exlnx
we have
u01=0xex
exxex=−2xe2xlnxe2x=2xlnxor,u1=Z2xlnxdx=Zlnxd(x2)=x2lnx+Zx21xdx or
u1=x2lnx+x22
u02=ex0
exxex=2e2xlnxe2x=2lnxoru2=2lnxdx=2xlnx21xxdx=2xlnx2x.Therefore,yp=ex(x2lnx+x22)+xeax(2xlnx2x)3
and
y=ex[c1+c2xx2lnx+x22+2x2lnx2x2]
or
y=ex[c1+c2x+x2lnx32x2]