2xydy=(x2+y2)dx
dydx=x2+y22xy
2.dydx=xy+yx.
Let
y=vx then dydx=v+xdvdx
Hence
2(v+xdvdx)=1v+v
2v+2xdvdx=1v+v
2xdvdx=1v−v
2xdvdx=1−v2v
2v1−v2dv=dxx
∫2v1−v2dv=∫dxx
∫2v1−v2dv=ln(x)+c
Let
1−v2=t
−2v.dv=dt
Hence
I=∫2v1−v2dv=−∫dtt
=−lnt
=−ln(1−v2).
Hence the differential equation becomes
−ln(1−v2)=lnx+C
Or
lnx+ln(1−v2)+C=0
ln(x−xv2)+C=0
ln(x−x(y2x2)+C=0
ln(x−y2x)+C=0
ln(x2−y2x)+C=0