Consider given the deferential equation,
(ey+1)cosxdx+eysinxdy=0
(ey+1)cosxdx=−eysinxdy
cosxdxsinx=−eyey+1dy
cotx.dx=−eyey+1dy
Taking integration both sides,
∫cotx.dx=−∫eyey+1dy
logsinx=−log(ey+1)+logC
logsinx=logC(ey+1)
sinx=C(ey+1)
(ey+1)sinx=C