dydx=y+√x2+y2x ...(i)
Putting y=vx⇒dydx=v+xdvdx
Also v=yx
∴ Equation (i) becomes
v+xdvdx=vx+√x2+v2x2x
∴v+xdvdx=v+√1+v2
⇒xdvdx=√1+v2
⇒1√1+v2dx=1xdx
On integration, we get
∫1√1+v2dv=∫1xdx
⇒log∣∣v+√1+v2∣∣=log|x|+logc
⇒log∣∣
∣∣yx+√1+y2x2∣∣
∣∣=log|cx|
⇒y+√x2+y2x=cx
⇒y+√x2+y2=cx2
This is the general solution.