wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation:
cosxdydx+y=sinx

Open in App
Solution

dydx+1cosx.y=sinxcosx
1cosx.y=tanx
dydx+ysecx=tanx
Comparing with dydx+py=q
P=secx,q=tanx
I.f=esecxdx=elog(secx+tanx)=secx+tanx
Therefore required solution is
y.ePdx=ePdxQdx
y(secx+xtanx)=tanx(secx+tanx)dx+c
=(secx+tanx)dx+tan2xdx+c=secx+(sec2x1)dx+c
=secx+tanxx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon