wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation
dydx3ycotx=sin2x, given y=2, when x=π2.

Open in App
Solution

dydx3ycotx=sin2x
This is a linear equation of the form dydx+Py=Q
Where P=3cotx,Q=sin2x
I.F.=epdx
I.F.=e3cotxdx=e3cotxdx
=e3logsinx=elog(sinx)3
=(sinx)3=1sin3x
Its solution is y.(I.F.)=Q(I.F.)dx
y.asin3x=sin2x.1sin3xdx
ysin3x=2sinx.cosxsin3xdx
ysin3x=2cosec x.cotx.dx
ysin3x=2cosec x+c
Putting y=2,x=π/2, 2sin3π2=2cosec (π2)+c
2=2+cc=4
ysin3x=2sinx+4
y=2sin2x+4sin3x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon