wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

solve the differential equation : dydx+ysec2x=tanxsec2y;y(0)=1

Open in App
Solution

dydx+ysec2x=tanx.sec2y y(0)=1

Integrating Factor,

esec2xdx=etanx

solution,

y(I.F)=tanx.sec2x(I.F)dx ......(1)

y.etanx=tanx.sec2x.etanx.dx

tanx.sec2x.etanxdx

Let tanx=t

sec2xdx=dt

tanx.sec2x.etanxdx=t.etdt

=tetet

=(tanx1)etanx

solution yetanx(tanx1)etanx+C

Now when x=0 y=1

1=1+cC=2

yetanx=tanx.etanxetanx+2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon