wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation dydx+ysecx=tanx,0x<π2.

Open in App
Solution

Given dydx+ysecx=tanx
It is of the form dydx+yp(x)=q(x)
Integrating factor ep(x)
Integrating factor esecx
=eln|secx+tanx|=|secx+tanx|
Solution: y|secx+tanx|=tanx(secx+tanx|)dx
=tanxsecxdx+tan2xdx
tan2x=sec2x1
=secx+tanxx+c
therefore final solution is: y|secx+tanx|=secx+tanxx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon