Solve the differential equation: 2cosxdydx+4ysinx=sin2x
A
ysec2x=∫secxtanx+c=secx+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ysec2x=−∫secxtanx+c=−secx+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ysec3x=∫secxtanx+c=secx+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aysec2x=∫secxtanx+c=secx+c. Given equation is 2cosxdydx+4ysinx=sin2x
⇒dydx+2tanxy=sinx ...(1) Here P=2tanx⇒∫Pdx=∫2tanxdx=log(sec2x) ∴I.F.=elog(sec2x)=sec2x Multiplying (1) by I.F., we get sec2xdydx+2tanxsec2xy=sinxsec2x Integrating both sides, we get ysec2x=∫secxtanx+c=secx+c