wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation: 2cosxdydx+4ysinx=sin2x

A
ysec2x=secxtanx+c=secx+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ysec2x=secxtanx+c=secx+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ysec3x=secxtanx+c=secx+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A ysec2x=secxtanx+c=secx+c.
Given equation is 2cosxdydx+4ysinx=sin2x
dydx+2tanxy=sinx ...(1)
Here P=2tanxPdx=2tanxdx=log(sec2x)
I.F.=elog(sec2x)=sec2x
Multiplying (1) by I.F., we get
sec2xdydx+2tanxsec2xy=sinxsec2x
Integrating both sides, we get
ysec2x=secxtanx+c=secx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon