Solving Linear Differential Equations of First Order
Solve the dif...
Question
Solve the differential equation: cosxdydx+ysinx=sec2x
A
ysecx=−tanx−13tan3x+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ysecx=∫(1+tan2x)sec2xdx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ysecx=tanx+13tan3x+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
ysecx=−∫(1+tan2x)sec2xdx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Cysecx=tanx+13tan3x+c. Dysecx=∫(1+tan2x)sec2xdx cosxdydx+ysinx=sec2x⇒dydx+ytanx=sec3x ...(1) Here P=tanx⇒∫Pdx=∫tanxdx=logsecx ∴I.F.=esecx=secx Multiplying (1) by I.F. we get secxdydx+ytanxsecx=sec4x Integrating both sides we get ysecx=∫sec4xdx+c=∫(1+tan2x)sec2xdx=tanx+13tan3x+c