wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation: cosxdydx+ysinx=sec2x

A
ysecx=tanx13tan3x+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ysecx=(1+tan2x)sec2xdx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ysecx=tanx+13tan3x+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
ysecx=(1+tan2x)sec2xdx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
C ysecx=tanx+13tan3x+c.
D ysecx=(1+tan2x)sec2xdx
cosxdydx+ysinx=sec2xdydx+ytanx=sec3x ...(1)
Here P=tanxPdx=tanxdx=logsecx
I.F.=esecx=secx
Multiplying (1) by I.F. we get
secxdydx+ytanxsecx=sec4x
Integrating both sides we get
ysecx=sec4xdx+c=(1+tan2x)sec2xdx=tanx+13tan3x+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon