wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation: dydx2ytanx=y2tan2x.

A
1ysec2x=12tan3x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1ysec2x=13tan3x+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1ysec2x=12tan3x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1ysec2x=13tan3x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1ysec2x=13tan3x+c
dydx2ytanx=y2tan2x1y2dydx2tanxy=tan2x

Substitute 1y=v1y2dy=dv

dvdx+2tanxv=tan2x ...(1)

Here P=2tanxPdx=2tanxdx=2log(secx)=logsec2x

I.F.=elogsec2x=sec2x

Multiplying (1) by I.F. we get

sec2xdvdx+2sec2xtanxv=sec2xtan2x

Integrating both sides we get

vsec2x=sec2xtan2xdx+c=13tan3x+c

1ysec2x=13tan3x+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon