Solve the differential equation: dydx+1xtany=1x2tanysiny.
A
2x=siny(1−2cx2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2x=siny(1+2cx2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2x+siny(1−2cx2)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2x=siny(1−2cx2) dydx+1xtany=1x2tanysiny
⇒cotycscydydx+1xcscy=1x2 Put −cscy=v⇒cotycscydy=dx ∴dvdx−1x.v=1x2 ...(1) Here P=−1x⇒∫Pdx=−∫1xdx=−logx=log1x ∴I.F.=elog1x=1x Multiplying (1) by I.F. we get 1xdvdx−1x2.v=1x3 Integrating both sides vx=∫1x3dx+c⇒−12x2+c