Solve the differential equation: dydx−tany1+x=(1+x)exsecy
A
siny=(ex+c)(1+x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
siny=(ex+c)(1−x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cosy=(ex+c)(1+x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cosy=(ex+c)(1−x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Asiny=(ex+c)(1+x) dydx−tany1+x=(1+x)exsecy⇒cosydydx−siny1+x=(1+x)ex Put siny=v⇒cosydy=dx ∴dvdx−v1+x=(1+x)ex ...(1) Here P=−11+x⇒∫Pdx=−∫11+xdx=−log(1+x)=log(11+x) ∴I.F.=elog(11+x)=11+x Multiplying (1) by I.F. we get 11+xdvdx−v(1+x)2=ex Integrating both sides we get v1+x=∫exdx+c=ex+c⇒siny=(ex+c)(1+x)