wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation: dydx+ycosx=sinxcosx

A
y=(sinx+1)+cesinx.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=(sinx1)+cesinx.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=(sinx1)+cesinx.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C y=(sinx1)+cesinx.
dydx+ycosx=sinxcosx ...(1)
Here P=cosxPdx=cosxdx=sinxdx
I.F=esinx
Multiplying (1) by I.F, we get
esinxdydx+ycosxesinx=sinxcosxesinx
Integrating both sides w.r.t. x, we get
esinxy=sinxcosxesinx+c
yesinx=esinx(sinx1)+c
y=(sinx1)+cesinx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon