Solve the differential equation: dydx−ytanx=−2sinx
A
ysinx=c+12cos2x.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−ycosx=c−12cos2x.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ycosx=12cos2x+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cycosx=12cos2x+c Given, dydx−ytanx=−2sinx ...(1) Here P=−tanx⇒∫Pdx=−∫tanxdx=−logsecx=logcosx ∴I.F.=elogcosx=cosx Multiplying (1) by I.F., we get cosxdydx−ysinx=−2sinxcosx Integrating both sides we get ycosx=−∫sin2x+c=12cos2x+c