wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation: (x2−1)dydx+2(x+2)y=2(x+1).

A
y(x+1)3x+1={(x+1)224(x+1)+4log(x+1)}+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y(x1)3x+1={(x+1)224(x+1)+4log(x+1)}+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y(x1)3x1={(x+1)224(x+1)+4log(x+1)}+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B y(x1)3x+1={(x+1)224(x+1)+4log(x+1)}+c.
Given, (x21)dydx+2(x+2)y=2(x+1)
dydx+2(x+2)x21y=2(x+1)x21=2(x1) ...(1)
Here P=2(x+2)x21Pdx=2(x+1)x21dx.
=3log(1x)log(x+1)=log((1x)3x+1)
I.F=elog((1x)3x+1)=((1x)31+x)
Multiplying (1) by I.F, we get
(1x)31+xdydx2(1x)2(x+2)(x+1)y=2(1x)21+x
Integrating both sides
y(x1)31+x=2(1x)31+xdx+c
=2(x1)3x+1+c=2(x24x8x+1+7)dx+c
=(x+1)224(x+1)+4log(x+1)+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon