Solving Linear Differential Equations of First Order
Solve the dif...
Question
Solve the differential equation: (x2−1)dydx+2(x+2)y=2(x+1).
A
y(x+1)3x+1={(x+1)22−4(x+1)+4log(x+1)}+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y(x−1)3x+1={(x+1)22−4(x+1)+4log(x+1)}+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y(x−1)3x−1={(x+1)22−4(x+1)+4log(x+1)}+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is By(x−1)3x+1={(x+1)22−4(x+1)+4log(x+1)}+c. Given, (x2−1)dydx+2(x+2)y=2(x+1) ⇒dydx+2(x+2)x2−1y=2(x+1)x2−1=2(x−1) ...(1) Here P=2(x+2)x2−1⇒∫Pdx=∫2(x+1)x2−1dx. =3log(1−x)−log(x+1)=log((1−x)3x+1) ∴I.F=elog((1−x)3x+1)=((1−x)31+x) Multiplying (1) by I.F, we get (1−x)31+xdydx−2(1−x)2(x+2)(x+1)y=−2(1−x)21+x Integrating both sides y(x−1)31+x=−∫2(1−x)31+xdx+c =2∫(x−1)3x+1+c=2∫(x2−4x−8x+1+7)dx+c =(x+1)22−4(x+1)+4log(x+1)+c