Solve the differential equation: sec2ydydx+tany=x3.
A
tany=x3+3x2+6x−6+ce−x.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tany=x3−3x2−6x−6+ce−x.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tany=x3−3x2+6x−6+ce−x.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ctany=x3−3x2+6x−6+ce−x. sec2ydydx+tany=x3 Put tany=v⇒sec2ydy=dv ∴dvdx+v=x3 ...(1) Here P=1⇒∫Pdx=∫dx=x ∴I.F.=ex Multiplying (1) by I.F. we get exdvdx+exv=exx3 Integrating both sides we get ex.v=∫exx3dx+c=exx3−∫3x2exdx+c=exx3−3x2ex+∫6xexdx=exx3−3x2ex+6xex−∫6exdx=exx3−3x2ex+6xex−6ex⇒tany=x3−3x2+6x−6+ce−x