Solve the differential equation: sinydydx=cosy(1−xcosy)
A
secye−x=−e−x(x+1)+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
secye−x=e−x(x−1)+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
secye−x=−e−x(x−1)+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
secye−x=e−x(x+1)+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dsecye−x=e−x(x+1)+c. sinydydx=cosy(1−xcosy)
⇒secytanydydx−secy=−x Put secy=v⇒secytanydy=dx ∴dvdx−v.1=−x ...(1) Here P=−1⇒−∫dx=−x ∴I.F.=e−x Multiplying (1) by I.F. we get e−xdvdx−e−xv=−xe−x Integrating both sides we get e−xv=−∫xe−xdx+c=e−x(x+1)+c