wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation: tanydydx+tanx=cosycos2x.

A
secysecx=sinxc.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
secysecx=sinx+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
secysecx=sinx+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A secysecx=sinxc.
C secysecx=sinx+c.
tanydydx+tanx=cosycos2x
secytanydydx+secytanx=cos2x
Put secy=vsecytanydy=dv
dvdx+vtanx=cos2x ...(1)
Here P=tanxPdx=tanxdx=logsecx
I.F.=elogsecx=secx
Multiplying (1) by I.F. we get
secxdvdx+vtanxsecx=cosx
Integrating both sides we get
secxv=cosxdx+csecysecx=sinx+c
Constant can also be negative hence option (A) is also true

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon