Solve the differential equation: tanydydx+tanx=cosycos2x.
A
secysecx=sinx−c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
secysecx=−sinx+c.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
secysecx=sinx+c.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Asecysecx=sinx−c. Csecysecx=sinx+c. tanydydx+tanx=cosycos2x
⇒secytanydydx+secytanx=cos2x Put secy=v⇒secytanydy=dv ∴dvdx+vtanx=cos2x ...(1) Here P=tanx⇒∫Pdx=∫tanxdx=logsecx ∴I.F.=elogsecx=secx Multiplying (1) by I.F. we get secxdvdx+vtanxsecx=cosx Integrating both sides we get secxv=∫cosxdx+c⇒secysecx=sinx+c
Constant can also be negative hence option (A) is also true