Solve the differential equation xdy−ydx=(x2+y2)dx.
A
y=xtan(x+c)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y=xtan(x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=xtan(−x+c)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=xtan(−x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ay=xtan(x+c) xdy−ydx=(x2+y2)dx⇒xdydx−y=x2+y2 Substitutey=vx⇒dydx=v+xdvdx ∴x(xdvdx+v)−xv=x2+x2v2⇒dvdx=v2+1⇒1v2+1dvdx=1 Integrating both sides ∫1v2+1dvdxdx=∫dx⇒tan−1v=x+c⇒v=tan(x+c)⇒y=xtan(x+c)