The correct option is B tan−1yx−12log(x2+y2)=c
Given differential eqn
(x+y)dx+(y−x)dy=0
dydx=x+yx−y
Put y=vx
dydx=v+xdvdx
So, the given differential equation becomes
v+xdvdx=1+v1−v
xdvdx=1+v21−v
⇒(1−v)dv1+v2=dxx
Integrating both sides, we get
⇒∫dv1+v2−∫vdv1+v2=∫dxx
Put 1+v2=t in second integral
⇒2vdv=dt
⇒tan−1v−−12∫dtt=logx+logC
⇒tan−1yx−12log(1+v2)=logx+logC
⇒tan−1yx−12log(x2+y2)+logx=logx+logC