1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Equation of Normal at a Point (x,y) in Terms of f'(x)
Solve the dif...
Question
Solve the differential equation
d
y
d
x
=
2
x
log
x
+
1
sin
y
+
y
cos
y
, given that y = 0, when x = 1.
Open in App
Solution
We
have
,
d
y
d
x
=
2
x
log
x
+
1
sin
y
+
y
cos
y
⇒
sin
y
+
y
cos
y
d
y
=
2
x
log
x
+
1
d
x
Integrating
both
sides
,
we
get
∫
sin
y
+
y
cos
y
d
y
=
∫
2
x
log
x
+
1
d
x
⇒
∫
sin
y
d
y
+
∫
y
cos
y
d
y
=
∫
2
x
log
x
d
x
+
∫
2
x
d
x
⇒
-
cos
y
+
y
∫
cos
y
d
y
-
∫
d
d
y
y
∫
cos
y
d
y
d
y
=
2
log
x
∫
x
d
x
-
∫
d
d
x
log
x
∫
x
d
x
d
x
+
x
2
⇒
-
cos
y
+
y
sin
y
+
cos
y
=
2
log
x
×
x
2
2
-
x
2
4
+
x
2
+
C
⇒
y
sin
y
=
x
2
log
x
-
x
2
2
+
x
2
+
C
⇒
y
sin
y
=
x
2
log
x
+
x
2
2
+
C
.
.
.
.
.
(
1
)
Given
:
x
=
1
,
y
=
0
.
Substituting
the
values
of
x
and
y
in
(
1
)
,
we
get
0
=
0
+
1
2
+
C
⇒
C
=
-
1
2
Substituting
the
value
of
C
in
(
1
)
,
we
get
y
sin
y
=
x
2
log
x
+
x
2
2
-
1
2
⇒
2
y
sin
y
=
2
x
2
log
x
+
x
2
-
1
Hence
,
2
y
sin
y
=
2
x
2
log
x
+
x
2
-
1
is
the
required
solution
.
Suggest Corrections
0
Similar questions
Q.
Find the particular solution of the differential equation
d
y
d
x
=
x
(
2
l
l
o
g
x
+
1
)
s
i
n
y
+
y
c
o
s
y
given that
y
=
π
2
where x = 1 .
Q.
d
y
d
x
=
x
2
log
x
+
1
sin
y
+
y
cos
y
Q.
Solve the following differential equation :
[
y
−
x
c
o
s
y
x
]
d
y
+
[
y
c
o
s
y
x
−
2
x
s
i
n
y
x
]
d
x
=
0.
Q.
Find the particular solution of the differential equation
d
y
d
x
=
x
(
2
log
x
+
1
)
sin
y
+
y
cos
y
given that
y
=
π
2
when
x
=
1
.
Q.
Solve the differential equation
(
1
+
y
2
)
(
1
+
l
o
g
x
)
d
x
+
x
d
y
=
0
, given that when
x
=
1
then
y
=
1
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Explore more
Equation of Normal at a Point (x,y) in Terms of f'(x)
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app