wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation dydx=2xlog x+1sin y+y cos y, given that y = 0, when x = 1.

Open in App
Solution

We have,dydx=2xlog x+1sin y+ycos ysin y+ycos y dy=2xlog x+1 dxIntegrating both sides, we getsin y+ycos y dy=2xlog x+1 dxsin y dy+ ycos y dy=2x log x dx+2x dx-cos y+ycos y dy-ddyycos y dydy=2log x x dx-ddxlog xx dxdx+x2-cos y+y sin y+cos y=2 log x×x22-x24+x2+Cy sin y=x2log x-x22+x2+Cy sin y=x2log x+x22+C .....(1)Given: x=1, y=0.Substituting the values of x and y in (1), we get 0=0+12+CC=-12Substituting the value of C in (1), we gety sin y=x2log x+x22-122y sin y=2x2log x+x2-1Hence, 2y sin y=2x2log x+x2-1 is the required solution.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon