We have,
(ex+1)ydy+(y+1)dx=0
(ex+1)ydy=−(y+1)dx
y(y+1)dy=−1(ex+1)dx
On taking integration both sides, we get
∫y(y+1)dy=−∫1(ex+1)dx
∫y+1−1(y+1)dy=−∫1(ex+1)dx
∫1dy−∫1(y+1)dy=−∫exex(ex+1)dx ……. (1)
Let I=−∫exex(ex+1)dx
Let t=ex
dt=exdx
Therefore,
I=−∫1t(t+1)dt
I=−∫(1t−1t+1)dt
I=−(ln(t)−ln(t+1))
I=ln(t+1)−ln(t)
I=ln(ex+1)−ln(ex)
I=ln(ex+1ex)
From equation (1),
∫1dy−∫1(y+1)dy=ln(ex+1ex)
y−ln(y+1)=ln(ex+1ex)+C
Hence, this is the answer.