wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation (1+x2)dydx+y=etan1x.

Open in App
Solution

(1+x2)dydx+y=etan1x
dydx+y1+x2=etan1x1+x2
Hence
IF=e11+x2dx
=etan1x
Therefore
etan1xdy+etan1xy1+x2dx=e2tan1x1+x2dx
d(etan1x.y)=d(e2tan1x2)
Integrating both sides
d(etan1x.y)=d(e2tan1x2)
etan1x.y=0.5e2tan1x+c
Or
2y=etan1x+2cetan1x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon