(tan−1x−y)dx=(1+x2)dy
⇒dydx=tan−1x−y1+x2
⇒dydx+y1+x2=tan−1x1+x2 ...(i)
∴ I.F. = e∫11+x2dx=etan−1x
Multiplying both sides of (i) by etan−1x , we have
dydx.etan−1x+y1+x2.etan−1x=tan−1x1+x2.etan−1x
Integrating both sides w.r.t. x, we have y.etan−1x=∫tan−1x1+x2.etan−1xdx+c
Put tan−1x=t⇒11+x2dx=dt
⇒y.et=∫ett dt+C
⇒y.et=et(t−1)+C
⇒y.etan−1x=etan−1x(tan−1x−1)+C
⇒y=tan−1x−1+C.e−tan−1x