Consider the given equation.
(x−√xy)dy=ydx
dydx=y(x−√xy) …… (1)
Put y=vx
On differentiating both sides w.r.t x, we get
dydx=v+xdvdx
Therefore,
vx(x−√x2v)=v+xdvdx
v(1−√v)=v+xdvdx
xdvdx=v(1−√v)−v
xdvdx=v3/2(1−√v)
(1−√vv3/2)dv=dxx
On taking integral both sides, we get
∫(1−√vv3/2)dv=∫dxx
∫(1v3/2−1v)dv=∫dxx
−2√v−ln(v)=lnx+C
On putting the value of v, we get
−2√yx−ln(yx)=lnx+C
−2√xy−ln(yx)=lnx+C
−lnx−ln(yx)=2√xy+C
−ln(y)=2√xy+C
Hence, this is the answer.Consider the given equation.
(x−√xy)dy=ydx
dydx=y(x−√xy) …… (1)
Put y=vx
On differentiating both sides w.r.t x, we get
dydx=v+xdvdx
Therefore,
vx(x−√x2v)=v+xdvdx
v(1−√v)=v+xdvdx
xdvdx=v(1−√v)−v
xdvdx=v3/2(1−√v)
(1−√vv3/2)dv=dxx
On taking integral both sides, we get
∫(1−√vv3/2)dv=∫dxx
∫(1v3/2−1v)dv=∫dxx
−2√v−ln(v)=lnx+C
On putting the value of v, we get
−2√yx−ln(yx)=lnx+C
−2√xy−ln(yx)=lnx+C
−lnx−ln(yx)=2√xy+C
−ln(y)=2√xy+C
Hence, this is the answer.