wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation (tan1xy)dx=(1+x2)dy.

Open in App
Solution

(tan1xy)dx=(1+x2)dy

dydx=tan1xy1+x2

dydx+11+x2y=tan1x1+x2

Above equation is linear dydx+Py=Q

P=11+x2Q=tan1x1+x2

IF = e^{\int Pdx}$

=e(1/1+x2)dx

=etan1x

solution is given as
yetan1x=(tan1x1+x2etan1x)dx+c ...(1)

tan1x=t

11+x2dx=dt

tetdt

=t×etdt(ddt(t)×etdt]at

=tetetdt

=tetet

=tan1xetan1xetan1x

From (1), we get

yetan1x=tan1xetan1xetan1x+C=y=tan1x1+cetan1x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon