Given differential equation is
(x+1)dydx=2e−y−1
⇒dy2e−y−1=dxx+1⇒ey2−ey dy=1x+1dx
Integrating both sides, we get
∫ey2−ey dy=∫1x+1dx⇒−log|2−ey|=log|1+x|+log|C| (∵∫f′(x)f(x) dx=logf(x))⇒log1|2−ey|=log|C(1+x)|⇒12−ey=C(1+x)Given, y(0)=0⇒C=1
Therefore, the particular solution of the given differential equation is 12−ey=1+x
⇒(1+x)(2−ey)=1