Different equation (x2+xy)dy=(x2+y2)dx
⇒dydx=x2+y2x2+xy
by putting y=vx
∴dydx=v+x.dvdx
∴v+x.dvdx=x2+v2x2x2+vx2
⇒v+x.dvdx=x2(1+v2)x2(1+v)
⇒x.dvdx=(1+v2)(1+v)−v
⇒x.dvdx=1+v2−v−v21+v
⇒x.dvdx=1−v1+v
⇒(1+v1−v)dv=1x.dx
⇒(−1+21−v)dv=1x.dx
On integration both side
∴−∫1dv+2∫11−vdv=∫1xdx
⇒∴−v+2loge(1−v)−1=logex+c
⇒logex+2loge(1−v)+v+c=0
⇒logex+2loge(1−yx)+yx+c=0.