Given, (x2+y2)dx−2xydy=0
⇒(x2+y2)dx=2xydy
⇒dydx=x2+y22xy .... (i)
Let y=vx
Thus, dydx=v+xdvdx
Thus, v+xdvdx=x2+(vx)22x(vx)
⇒v+xdvdx=1+v22v
⇒xdvdx=1+v22v−v
⇒xdvdx=1+v2−2v22v
⇒xdvdx=1−v22v
⇒dxx=2v1−v2dv
⇒dxx−2v1−v2dv=0 .... (ii)
Integrating both sides, we have
logx+log(1−v2)=logC
⇒logx(1−v2)=logC
⇒x(1−v2)=C
⇒x(1−y2x2)=C
⇒x(x2−y2x2)=C
⇒x2−y2=Cx