Solving Linear Differential Equations of First Order
Solve the dif...
Question
Solve the differential equation : xdydx=2y+x4+6x2, x≠0
A
y=x42+6x3logx+cx2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=x42+6x2logx+cx2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y=x42−6x3logx+cx2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=y42−6x2logx+cx2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is By=x42+6x2logx+cx2 xdydx=2y+x4+6x2⇒dydx−2yx=x4+6x2x Let u=e∫−2xdx=1x2 Multiply both sides by u dydxx2−2yx3=x4+6x2x3 Substitute −2x3=ddx(1x2) dydxx2+ddx(1x2)y=x4+6x2x3 Using gdfdx+fdgdx=ddx(fg) ddx(yx2)=x4+6x2x3 Integrating both sides w.r.t x, we get ∫ddx(yx2)dx=∫x4+6x2x3dx⇒yx2=x22+6logx+c⇒y=x42+6x2logx+cx2